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Space Plasma Environment 

Electrojet 

Ionosphere 

EMF 



The Polar Ionosphere as Plasma 

D (h<70 km): ν>Ωe,ωe weakly 
ionized gas – not plasma 

E(70<h<120 km): ωe,Ωe>ν , Ωi <ν 
EMHD plasma – Helicon waves – 
no Alfven or Ion Cyclotron waves


F (h> 120 km):Collisionless (ν<<Ω), 
Magnetized plasma – Electron and 
ion plasma waves, cyclotron 
waves, whistlers, MHD ( Shear-
Msonic) waves. Notice min. of VA at 
F-peak. 

Magnetosphere 

Active Regions (Plasmas with Free 
Energy): E-Electrojets 

B 



Active Experiments 
 Inject Energy in Space 

 Ionospheric Heaters –  HAARP  
•   Ionospheric heater - Powerful HF transmitter (2.8-10 MHz) that induces controlled 
temporary modification to the electron temperature at desired altitude.  

•  Use in conjunction with diagnostics to study, in a cause and effect fashion: 
•  EM propagation, plasma turbulence and instabilities 
•  Response of magnetospheric plasma and Radiation Belts to controlled 
perturbations of the ionospheric plasma 
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How to control location and 
profile of electron heating 

Ionosonde - Radar 

Heater 

Anomalous absorption 

Collisional Heating 
Ohmic 



The Polal Electrojet (PEJ) Antenna 
Study wave-

particle 
interactions  

Use modulated 
ionospheric heating 
to inject controlled 
magnetic signals  

30 kHz<f<.01 Hz 

How does the PEJ work ? 

MT 

Impossible to use 
conventional low 

frequency 
transmitters 

Downconvert 
HF to 

ULF/VLF/ELF 

EM Energy 
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HAARP 

DEMETER -DMSP 

800 KM 

HAARP 

Lake Ozette 

Where do we 
detect the effects 

Ground Probes 
Satellite 
Probes 
650-700 

km 

650 km 

4500 km 



 ELF/VLF ground detection and 
propagation  

150 km 

Moore et al. 
GRL 2008 

5400 
km 
away 
Midway 



VLF INJECTION IN SPACE 

Platino et 
al. GRL 
2004 

B 

E 

DEMETER - 700 
KM ALTITUDE 



Physics Studies Using the PEJ 

•  Wave-particle interactions in the Radiation 
Belts – Whistler range 
– Artificially Stimulated Emissions (ASE) 

•  ULF ( < 8 Hz) – MHD Study 
– E-I Guided propagation 
– SA wave injection in space 
– Excitation of the Ionospheric Alfven Resonator 

(IAR) 
–   SA wave (Pc1) triggering 



Controlled studies of cyclotron resonant 
wave-particle interactions  

Whistler waves resonate with trapped particles in the radiation belts causing 
pitch angle scattering and precipitation. B0 

trapped α 



Siple Station, Antarctica VLF Wave-
injection  Experiment 

•  NSF-funded Stanford 
experiment (1973-88) 

•  VLF waves (~1.5-5 kHz) 
injected from Siple Station, 
Antarctica 

•  150 kW transmitter, 42-km 
antennas 

•  Tuned with large capacitors 
and coils  

•  VLF receiver at Roberval & 
Lake Mistissini, Quebec 

•  Controlled studies of 
cyclotron resonant wave-
particle interactions 

•  Uncovered many aspects of 
wave growth & emission 
triggering    



Amplified  VLF Signals with Intense 

Triggered Emissions  



Growth & Saturation 

Amplitude in 

~100 Hz band




Amplitude Effect on Growth 

COHERENT GROWTH 
20-30 dB 

•  THRESHOLD 
•  SIGNAL SATURATION 
•  TRIGGERED EMISSIONS 
– risers, fallers, hooks 
•  ENTRAINMENT 

TRANSITION TO OSCILLATOR BEHAVIOR 

A serious challenge to our current understanding of 
nonlinear plasma physics – See Lampe, Ganguli, Joyce, 
Manheimer YO3.9 



HAARP ELF/VLF INJECTION STUDY 

EXPERIMENTS CONDUCTED BY STANFORD UNIVERSITY – U. INAN 



Amplified ELF Signals on the HAARP 
Stanford Buoy 



Multiple Traverses Between 
Hemispheres 



15 dB/s Amplification & Triggered 
Emissions 

Only the pulse at 1100 Hz is amplified 



Two-Hop Echoes of HAARP ELF/VLF 
Pulses and Ramps  

2-hop 
of ramp 

Pulses above 2 kHz have 1-hop echoes with triggered emissions 
Pulse near 1.7 kHz does not; ramps have echoes with no emissions 



MHD Wave Generation 
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Shear Alfven (SA) guided by 
the magnetic field 

k 

Bb 

S 
vg E

D=εΕ 

Magnetosonic (MS)   
Isotropic Notice b 

parallel 
to B 

PEJ injects oscillatory field  aligned currents 
excites only SA modes 

M



MHD Wave Generation by the PEJ   

•  SA waves can be detected: (a) In the near zone below 
the heated spot and (b) By satellites over-flying the 
heated spot but confined to the magnetic flux tube that 
spans the heated spot (c) Through the EI waveguide 
for f>8 Hz (Schumann Resonance) 

PEJ 

SA will be guided by the magnetic field 
to the conjugates – No lateral 

propagation through the plasma 

Evanescent in EI Waveguide if f<8Hz 

Schumann  



ULF Signal Propagation  
 Evanescent Mode (1 Hz) 

•  28 April, 2007 UTC 05:01:00 – 05:05:45 
•  HAARP at 2.88 MW and 3.3 MHz 
•  Detected 1 Hz & 3 Hz peaks 
•  B~1/R2  wave evanescent (Frequencies below Schumann 

Resonance) 

9.9 pT .28 pT 

Gakona Juneau – 800 km 



Clear 15 Hz peak can be seen at 
both sites  
EW Amplitudes: 
 Gakona: 0.25 pT       
 Chiniak: 0.07 pT  

ULF Signal Propagation 
Propagating Mode (15 Hz) 

Gakona Chiniak – 670 km 

Propagating mode 
3 dB attenuation 



SEPTEMBER 28, 2008  

Frequency .2 Hz 

Closest distance 80 km 

Detection time 25 sec 

Detection distance 150 
km 

Maximum E 10 mV/m 

Estimated power ~ kW 

1.5 pT on the ground 

SAW DEMETER Detection 

Before After 

.2 Hz 



SA Waves – Ionospheric Alfven 
Resonator (IAR) 

Fabry-Perot like Resonator 

Cash et al. 2006 

k 

E 

B

b 

S vg 
SA wave is guided along the B field  

Reflections create standing wave 
structure 

Notice 

b·B=0 

Natural SA waves 

η=c/VA 



Excitation  of  the  IAR 
due  naturally  excited 
waves at .25 Hz and .5 
Hz  and  by  HAARP 
generated SA at 1.0 Hz.  

IAR Excitation by the PEJ 



STIMULATED SA EMISSION ? 

Triggered Pc1 and Stimulated Ion 
Precipitation ? 

Ion Cyclotron 
Instability 

SHEAR ALFVEN 
WAVE 

HAARP OFF 

HAARP ON 



ULF at Gakona – Power Spectral 
Density (PSD) 

•  Frequency spectrum in 
a moving time window 

•  Clear Schumann 
resonances at 8, 14, .. 
Hz 

•  Signals emerge as 
freq. peaks in sync with 
HAARP ULF operation 

•  Greatly varying 
background below 1 Hz  

Triggered Pc1 
broadband 

10’ 



F-Region Heating Physics Studies 

•  F-Region current drive 
– Msonic wave generation and propagation 

•  F-region plasma turbulence 
– Field aligned striation spectra 
– Electron acceleration optical emissions 
–  Ion heating and outflow- Ducts 
– Stimulated EM emissions (SEE) 

•  Gyro-harmonic studies 
•  Stimulated Brillouin Scattering (SBS) 



F-Region Heating-Current Drive 

Response time .5-1 sec 

Drive AC 
Diamagnetic Current 

Loop 



F-Region Msonic Wave Generation  

Ducted MS wave Bo 

HAARP 

∆J 

∆J 

F Layer 

The wave propagates isotropically but is 
reflected at the D/E region and is much weaker 
on the ground under the heated region. It can 
be measured by satellites or at large lateral 
distances (skip zone) 

Ejet not needed 

M parallel to B 



Msonic Wave Injection 

10 sec oscillations 

.1 Hz 

kW power 

DEMETER 



Lake Ozette vs. Gakona Detections 

Gakona 
Ozette 

.1 pT 

f  Hz f Hz 

Gakona 

Example .5 Hz 



F Region Heating 
Langmuir+Ion Acoustic Instability -PDI -OTSI 
Soliton+caviton pairs – Suprathermal tails 

Upper hybrid turbulence – Striations – 
Electron Heating  



F-Region Turbulence 
Field aligned irregularity 
structure from 10’s cm to 
tens of km 

Amplitude of radio waves 
received from the satellite 



Artificial Aurora – The Zenith Effect 
Electron Acceleration 



6300   5577        8446    4278 

Electron temperature <3500 K  Bulk electron energy <0.3 eV 

~ 0.5 million Kelvin 

Reconstruction of the EDF 

M. Kosch  

N2 
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are weak radio 
waves produced 
in the 
ionosphere by 
HF pumping.  

Gyroharmonic ≈ 1.38 MHz 
in F-layer (Honary et al., Ann. 

Geophysicae, 1999) 

Stimulated Electromagnetic Emissions 
(SEE) 



SEE Spectra 

Carozzi et al., JGR 2002 



SEE Gyro-Harmonics 

SURA Facility SEE Carozzi et al.JGR 2002 

4 Ω 100 kHz 



Stimulated Brillouin 
Scattering HAARP 

HAARP 2008 – Norin et al. 

40 dB stronger than any 
other SES 

Zenith 



 HAARP HF DEMETER Detection  
First SEE Satellite Detection?  



Supplementary Slides 



DP .96 MW 3.6 MW 

Temperature profile control - 
Saturation 



SAW Injection 



F-Region Structure and 
Turbulence 



Amplitude of radio waves 
received from the satellite 

Scintillations 
EISCAT 
Rietveld 



HF pump-induced magnetic field-aligned electron density 
irregularities (up to ~5%) causes coherent radar reflections and 
anomalous absorption (by scattering) of probing signals.  



Electron acceleration 

Eliasson and Thide 



Msonic Wave Injection 



Paradox ? 

.25 Hz    .5 Hz   
Natural lines 

HAARP 


